基于网络药理学探究兰艾双香方治疗细菌感染的机制研究*
作者:
作者单位:

(1. 陕西中医药大学,陕西 咸阳 712046;2. 陕西中医药大学附属医院,陕西 咸阳 712000)

作者简介:

通讯作者:

中图分类号:

R285

基金项目:

收稿日期: 2021 - 06- 28
* 基金项目: 国家级大学生创新创业训练计划项目(S202010716003)
第一作者简介: 宋健(1978-),男,博士,副教授、副主任医师,研究方向:中医药防治脾胃病。
△通信作者: 杨燕燕,E-mail:694149099@qq.com


Investigating the Mechanism of Lanai Shuangxiang Decoction for the Treatment of Bacterial Infection Based on Network Pharmacology
Author:
Affiliation:

(1. Shaanxi University of Traditional Chinese Medicine, Xianyang 712046 , China;2. Affiliated Hospital of Shaanxi University of Traditional Chinese Medicine, Xianyang 712000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
    摘要:

    目的 旨在通过网络药理学的研究方法寻找兰艾双香方在治疗细菌感染方面存在的潜在的分子机制及相关分子通路,为进一步研究兰艾双香方提供理论依据。方法 通过中药数据分析平台(TCMSP)筛选兰艾双香方的活性成分及对应靶点,对兰艾双香方进行复方成分分析,利用Cytoscape软件构建兰艾双香方治疗细菌感染的“单味药-活性成分-作用靶点”网络,再通过Gene Cards,OMIM和DigSee 3个数据库整合细菌感染的相关靶点,将靶点数据导入jvenn平台做出韦恩图,导入String平台得到PPI,导入Metascape中对兰艾双香方治疗细菌感染的作用靶点进行GO功能富集分析和KEGG通路富集分析,根据KEGG富集得到的通路绘制相关气泡图,将KEGG分析得到的通路导入Cytoscape软件构建“靶点通路”网络。结果 ①筛选得到兰艾双香方共110个药效成分和1 788个作用靶点,关键靶点包括过氧化物酶体增殖物激活受体、血管内皮生长因子A、肿瘤坏死因子和表皮生长因子受体等;②细菌感染相关靶点1 442个;③蛋白互作核心网络共97个蛋白,分析得到4个蛋白模块;④获得2 401个GO生物过程,KEGG通路富集筛选得到324条相关信号通路,通路类型包括癌症的路径、糖尿病并发症中的AGE-RAGE信号通路、乙型肝炎、肿瘤坏死因子信号通路、小细胞肺癌、利什曼病、HIF-1信号通路、军团杆菌病等,这些通路均与细菌感染的发生发展相关;⑤结果证实,兰艾双香方可能通过调节细胞代谢、增殖与凋亡、脂代谢等多种途径达到治疗细菌感染的目的,该目的是多成分、多靶点和多通路相互作用的结果。结论 兰艾双香方在癌症、糖尿病和乙型肝炎疾病进展过程中并发细菌感染的治疗可能有更好的疗效。

    Abstract:

    Objective To find out the potential molecular mechanisms and related molecular pathways of Lanai Shuangxiang decoction in the treatment of bacterial infections through the research method of network pharmacology, and to provide a theoretical basis for further research on Lanai Shuangxiang decoction. Methods The active ingredients and corresponding targets of Lanai Shuangxiang decoction were screened by the Traditional Chinese Medicine Data Analysis Platform(TCMSP), and the compound ingredients of Lanai Shuangxiang decoction were analyzed by Cytoscape software to construct a“single drug-active ingredient-target” network of Lanai Shuangxiang decoction for the treatment of bacterial infections. The target data were imported into jvenn to make a Wayne diagram, imported into String platform to obtain PPI, imported into Metascape to perform GO functional enrichment analysis and KEGG pathway enrichment analysis on the targets of Lanai Shuangxiang decoction for the treatment of bacterial infections, and based on the KEGG enrichment obtained, the relevant bubble maps were drawn. The KEGG pathway analysis was imported into Cytoscape software to construct the “target pathway” network. Results ①A total of 110 active ingredients and 1788 action targets were obtained from the screening of Lanai Shuangxiang decoction. The key targets included peroxisome proliferator-activated receptor, vascular endothelial growth factor A, tumor necrosis factor and epidermal growth factor receptor, etc.; ②1 442 targets related to bacterial infection; ③97 proteins in the core network of protein interactions, and 4 protein modules were analyzed; ④2 401 GO biological processes were obtained. KEGG pathway enrichment screening obtained 324 related signaling pathways, pathway types including pathways of cancer, AGE-RAGE signaling pathway in diabetic complications, hepatitis B, tumor necrosis factor signaling pathway, small cell lung cancer, leishmaniasis, HIF-1 signaling pathway, legionellosis, etc., which are all related to the development of bacterial infection; ⑤ The results confirmed that Lanai Shuangxiang prescription may achieve the purpose of treating bacterial infection by regulating cell metabolism, proliferation and apoptosis, lipid metabolism and other pathways, which is the result of multi-component, multi-target and multi-pathway interactions. Conclusion Lanai Shuangxiang decoction may have better efficacy in the treatment of bacterial infections complicated by the progression of cancer, diabetes and hepatitis B disease.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:

温馨提示

关闭